Tuesday 29 August 2017

Fórmula De Média Móvel De Projeção


Moving Average Forecasting Introdução. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução que vale a pena para algumas das questões de computação relacionadas com a implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nos seus resultados de teste em um curso onde você vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para a sua próxima pontuação de teste Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área dos 85 você apenas começ. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para eles desenvolver uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre sua inteligência. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você conseguiu um 85 e um 73, então talvez você deva imaginar sobre como obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festas E werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. Ambos estas estimativas são, na verdade, a média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados pela seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsões, porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são usados ​​para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel do período m, ao fazer previsões quotpast, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação NumberOfPeriods O código será explicado na classe. Você quer posicionar a função na planilha para que o resultado da computação apareça onde ele deve gostar da seguinte. Média Móvel: O que é e Como Calcular Assista ao vídeo ou leia o artigo abaixo: Uma média móvel é uma técnica Para obter uma idéia geral das tendências em um conjunto de dados é uma média de qualquer subconjunto de números. A média móvel é extremamente útil para prever as tendências a longo prazo. Você pode calculá-lo para qualquer período de tempo. Por exemplo, se você tiver dados de vendas para um período de vinte anos, você pode calcular uma média móvel de cinco anos, uma média móvel de quatro anos, uma média móvel de três anos e assim por diante. Os analistas do mercado de ações usarão frequentemente uma média movente de 50 ou 200 dias para ajudá-los a ver tendências no mercado conservado em estoque e (esperançosamente) prever onde os estoques estão indo. Uma média representa o valor 8220middling8221 de um conjunto de números. A média móvel é exatamente a mesma, mas a média é calculada várias vezes para vários subconjuntos de dados. Por exemplo, se você deseja uma média móvel de dois anos para um conjunto de dados de 2000, 2001, 2002 e 2003, você encontrará médias para os subconjuntos 20002001, 20012002 e 20022003. As médias móveis são normalmente plotadas e são visualizadas melhor. Calculando uma Média Móvel de 5 Anos Exemplo Exemplo Problema: Calcule uma média móvel de cinco anos a partir do seguinte conjunto de dados: (4M 6M 5M 8M 9M) ​​5 6.4M As vendas médias para o segundo subconjunto de cinco anos (2004 8211 2008). Centrada em torno de 2006, é de 6,6M: (6M 5M 8M 9M 5M) 5 6.6M As vendas médias para o terceiro subconjunto de cinco anos (2005 8211 2009). Centrado em torno de 2007, é 6.6M: (5M 8M 9M 5M 4M) 5 6.2M Continuar a calcular cada média de cinco anos, até chegar ao final do conjunto (2009-2013). Isso lhe dá uma série de pontos (médias) que você pode usar para traçar um gráfico de médias móveis. A seguinte tabela do Excel mostra as médias móveis calculadas para 2003-2012 juntamente com um gráfico de dispersão dos dados: Assista ao vídeo ou leia os passos abaixo: O Excel tem um poderoso add-in, o Data Analysis Toolpak (como carregar os dados Analysis Toolpak) que oferece muitas opções extras, incluindo uma função de média móvel automatizada. A função não só calcula a média móvel para você, mas também grava os dados originais ao mesmo tempo. Economizando um monte de batidas de tecla. Etapa 1: Clique na guia 8220Data8221 e, em seguida, clique em 8220Data Analysis.8221 Etapa 2: Clique em 8220Moving average8221 e, em seguida, clique em 8220OK.8221 Etapa 3: Clique na caixa 8220Input Range8221 e selecione os dados. Se você incluir cabeçalhos de colunas, verifique a caixa Rótulos na primeira linha. Passo 4: Digite um intervalo na caixa. Um intervalo é o número de pontos anteriores que você deseja que o Excel use para calcular a média móvel. Por exemplo, 822058221 utilizaria os 5 pontos de dados anteriores para calcular a média de cada ponto subsequente. Quanto menor o intervalo, mais próxima a sua média móvel é do seu conjunto de dados original. Etapa 5: Clique na caixa 8220Output Range8221 e selecione uma área na planilha onde deseja que o resultado apareça. Ou, clique no botão de opção 8220New worksheet8221. Etapa 6: Verifique a caixa 8220Chart Output8221 se você quiser ver um gráfico de seu conjunto de dados (se você esquecer de fazer isso, você sempre pode voltar e adicioná-lo ou escolher um gráfico a partir do 8220Insert8221 tab.8221 Passo 7: Pressione 8220OK .8221 O Excel retornará os resultados na área especificada na Etapa 6. Observe o vídeo ou leia as etapas abaixo: Exemplo de problema: Calcule a média móvel de três anos no Excel para os seguintes dados de vendas: 2003 (33M), 2004 (22M), 2006 (36M), 2006 (34M), 2007 (43M), 2008 (39M), 2009 (41M), 2010 (36M), 2011 (45M), 2012 (56M), 2013 (64M). 1: Digite seus dados em duas colunas no Excel. A primeira coluna deve ter o ano ea segunda coluna os dados quantitativos (neste exemplo problema, os números de vendas). Certifique-se de que não há linhas em branco em seus dados de célula. : Calcule a primeira média de três anos (2003-2005) para os dados. Para este problema de exemplo, digite 8220 (B2B3B4) 38221 na célula D 3. Calcular a primeira média Etapa 3: Arraste o quadrado no canto inferior direito d Para mover a fórmula para todas as células na coluna. Isso calcula médias para anos sucessivos (por exemplo, 2004-2006, 2005-2007). Arrastando a fórmula. Etapa 4: (Opcional) Crie um gráfico. Selecione todos os dados na planilha. Clique na guia 8220Insert8221 e, em seguida, clique em 8220Scatter, 8221 e, em seguida, clique em 8220Scatter com linhas suaves e marcadores.8221 Um gráfico de sua média móvel aparecerá na planilha. Confira nosso canal do YouTube para obter mais dicas e dicas de estatísticas Média em Movimento: O que é e Como Calcular foi modificado pela última vez: 8 de janeiro de 2016 por Andale 22 pensamentos sobre ldquo Média Móvel: O que é e Como Calcular rdquo Isto é Perfeito e simples de assimilar. Obrigado pelo trabalho Isso é muito claro e informativo. Pergunta: Como se calcula uma média móvel de 4 anos Em que ano a média móvel de 4 anos se centralizaria Centraria no final do segundo ano (ou seja, 31 de dezembro). Posso usar a renda média para prever ganhos futuros qualquer um sabe sobre meio centrado, por favor diga-me se alguém sabe. Aqui it8217s dado que temos de considerar 5 anos para obter a média que está no center. Then que sobre os anos de descanso, se queremos obter a média de 20118230as que don8217t têm valores após 2012, então como é que vamos calculá-lo Como você Don8217t tem mais informações seria impossível calcular o MA de 5 anos para 2011. Você poderia obter uma média móvel de dois anos embora. Olá, Obrigado pelo vídeo. No entanto, uma coisa não é clara. Como fazer uma previsão para os próximos meses O vídeo mostra a previsão dos meses para os quais os dados já estão disponíveis. Oi, Raw, I8217m trabalhando em expandir o artigo para incluir previsão. O processo é um pouco mais complicado do que usar dados passados. Dê uma olhada neste artigo Duke University, que explica em profundidade. Atenciosamente, Stephanie obrigado por uma explanantion claro. Hi Não é possível localizar o link para o artigo sugerido Universidade Duke. Os modelos ARIMA são, em teoria, a classe mais geral de modelos para prever uma série de tempo que pode ser feita para ser 8220stationary8221 por diferenciação ( Se necessário), talvez em conjunção com transformações não-lineares, como a extração madeireira ou a deflação (se necessário). Uma variável aleatória que é uma série de tempo é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ele se move de forma consistente. Isto é, os seus padrões de tempo aleatório a curto prazo têm sempre o mesmo aspecto num sentido estatístico. Esta última condição significa que suas autocorrelações (correlações com seus próprios desvios prévios em relação à média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de poder permanece constante ao longo do tempo. Uma variável aleatória desta forma pode ser vista (como de costume) como uma combinação de sinal e ruído, eo sinal (se for aparente) poderia ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou rápida alternância no sinal , E poderia também ter uma componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, tipo de regressão) na qual os preditores consistem em atrasos da variável dependente e / ou atrasos dos erros de previsão. Ou seja: Valor previsto de Y uma constante e / ou uma soma ponderada de um ou mais valores recentes de Y e / ou uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores defasados ​​de Y., é um modelo autoregressivo puro (8220 auto-regressado8221), que é apenas um caso especial de um modelo de regressão e que poderia ser equipado com software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y retardada por um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são defasagens dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não há maneira de especificar o erro 8222 como uma variável independente: os erros devem ser calculados em base período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros defasados ​​como preditores é que as previsões do modelo não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Portanto, os coeficientes em modelos ARIMA que incluem erros retardados devem ser estimados por métodos de otimização não-lineares (8220hill-climbing8221) ao invés de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags das séries estacionalizadas na equação de previsão são chamados de termos quotautorregressivos, os atrasos dos erros de previsão são chamados de quotmoving termos médios e uma série de tempo que precisa ser diferenciada para ser estacionária é dito ser uma versão quotintegrada de uma série estacionária. Modelos de Random-walk e tendência aleatória, modelos autorregressivos e modelos de suavização exponencial são casos especiais de modelos ARIMA. Um modelo ARIMA não sazonal é classificado como um modelo quotARIMA (p, d, q) quot, onde: p é o número de termos autorregressivos, d é o número de diferenças não sazonais necessárias para a estacionaridade e q é o número de erros de previsão defasados ​​em A equação de predição. A equação de previsão é construída como se segue. Em primeiro lugar, vamos dizer a d diferença de Y. o que significa: Note que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Pelo contrário, é a primeira diferença de primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação de previsão geral é: Aqui os parâmetros da média móvel (9528217s) são definidos de modo que seus sinais sejam negativos na equação, seguindo a convenção introduzida por Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) definem-los para que eles tenham mais sinais em vez disso. Quando números reais são conectados à equação, não há ambigüidade, mas é importante saber qual convenção seu software usa quando está lendo a saída. Muitas vezes os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230, etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionarizar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, tal como o desmatamento ou a deflação. Se você parar neste ponto e prever que a série diferenciada é constante, você tem apenas montado uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionária pode ainda ter erros autocorrelacionados, sugerindo que algum número de termos AR (p 8805 1) e / ou alguns termos MA (q 8805 1) também são necessários na equação de previsão. O processo de determinar os valores de p, d e q que são melhores para uma dada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns dos tipos De modelos não-sazonais ARIMA que são comumente encontrados é dada abaixo. ARIMA (1,0,0) modelo autoregressivo de primeira ordem: se a série é estacionária e autocorrelacionada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, mais uma constante. A equação de previsão neste caso é 8230, que é regressão Y sobre si mesma retardada por um período. Este é um modelo 8220ARIMA (1,0,0) constant8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (ele deve ser menor que 1 em magnitude se Y estiver parado), o modelo descreve o comportamento de reversão de média no qual o valor do próximo período deve ser 981 vezes 1 Longe da média como valor deste período. Se 981 1 for negativo, ele prevê o comportamento de reversão de média com alternância de sinais, isto é, também prevê que Y estará abaixo do próximo período médio se estiver acima da média neste período. Em um modelo autorregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 à direita também, e assim por diante. Dependendo dos sinais e magnitudes dos coeficientes, um modelo ARIMA (2,0,0) poderia descrever um sistema cuja reversão média ocorre de forma sinusoidal oscilante, como o movimento de uma massa sobre uma mola submetida a choques aleatórios . Se a série Y não for estacionária, o modelo mais simples possível para ela é um modelo randômico randômico, que pode ser considerado como um caso limitante de um modelo AR (1) em que o modelo autorregressivo Coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a variação média período-período (ou seja, a deriva a longo prazo) em Y. Este modelo poderia ser montado como um modelo de regressão sem interceptação em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não sazonal e um termo constante, é classificada como um modelo de ARIMA (0,1,0) com constante. quot O modelo randômico-sem-desvio seria um ARIMA (0,1, 0) sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: Se os erros de um modelo de caminhada aleatória são autocorrelacionados, talvez o problema possa ser corrigido adicionando um lag da variável dependente à equação de predição - Eu Pela regressão da primeira diferença de Y sobre si mesma retardada por um período. Isto resultaria na seguinte equação de predição: que pode ser rearranjada para Este é um modelo autorregressivo de primeira ordem com uma ordem de diferenciação não sazonal e um termo constante - isto é. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem suavização exponencial simples constante: Uma outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se que para algumas séries temporais não-estacionárias (por exemplo, as que exibem flutuações barulhentas em torno de uma média de variação lenta), o modelo de caminhada aleatória não funciona tão bem quanto uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com mais precisão a média local. O modelo de suavização exponencial simples usa uma média móvel exponencialmente ponderada de valores passados ​​para conseguir esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em um número de formas matematicamente equivalentes. Uma das quais é a chamada 8220error correction8221, na qual a previsão anterior é ajustada na direção do erro que ela fez: Como e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar uma suavização exponencial simples especificando-a como um modelo ARIMA (0,1,1) sem Constante, eo coeficiente MA (1) estimado corresponde a 1-menos-alfa na fórmula SES. Lembre-se que no modelo SES, a idade média dos dados nas previsões de 1 período antecipado é de 1 945, o que significa que tendem a ficar aquém das tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a média de idade dos dados nas previsões de 1 período de um modelo ARIMA (0,1,1) sem constante é de 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Quando 952 1 aproxima-se de 1, o modelo ARIMA (0,1,1) sem constante torna-se uma média móvel de muito longo prazo e como 952 1 Aproxima-se 0 torna-se um modelo randômico-caminhada-sem-deriva. Nos dois modelos anteriores discutidos acima, o problema dos erros autocorrelacionados em um modelo de caminhada aleatória foi fixado de duas maneiras diferentes: adicionando um valor defasado da série diferenciada Para a equação ou adicionando um valor defasado do erro de previsão. Qual abordagem é a melhor Uma regra para esta situação, que será discutida em mais detalhes mais adiante, é que a autocorrelação positiva é geralmente melhor tratada pela adição de um termo AR para o modelo e autocorrelação negativa é geralmente melhor tratada pela adição de um MA termo. Nas séries econômicas e de negócios, a autocorrelação negativa muitas vezes surge como um artefato de diferenciação. Portanto, o modelo ARIMA (0,1,1), no qual a diferenciação é acompanhada por um termo de MA, é mais freqüentemente usado do que um modelo de auto-correlação positiva. Modelo ARIMA (1,1,0). ARIMA (0,1,1) com suavização exponencial simples constante com crescimento: Ao implementar o modelo SES como um modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente MA (1) estimado pode ser negativo. Isto corresponde a um factor de suavização maior do que 1 num modelo SES, o que normalmente não é permitido pelo procedimento de ajustamento do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de predição: As previsões de um período de adiantamento deste modelo são qualitativamente semelhantes às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem suavização exponencial linear constante: Os modelos lineares de suavização exponencial são modelos ARIMA que utilizam duas diferenças não sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma retardada por dois períodos, mas sim é a primeira diferença da primeira diferença - i. e. A mudança na mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: ela mede a quotaccelerationquot ou quotcurvaturequot na função em um dado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prevê que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: que pode ser rearranjada como: onde 952 1 e 952 2 são MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que Holt8217s modelo, e Brown8217s modelo é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões a longo prazo deste modelo convergem para uma linha recta cujo declive depende da tendência média observada no final da série. ARIMA (1,1,2) sem suavização exponencial linear de tendência amortecida constante. Este modelo é ilustrado nos slides acompanhantes nos modelos ARIMA. Ele extrapola a tendência local no final da série, mas aplana-lo em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem apoio empírico. Veja o artigo sobre "Por que a tendência de amortecimento" trabalha por Gardner e McKenzie e o artigo de "Rule of Gold" de Armstrong et al. para detalhes. É geralmente aconselhável aderir a modelos nos quais pelo menos um de p e q não é maior do que 1, ou seja, não tente encaixar um modelo como ARIMA (2,1,2), uma vez que isto é susceptível de conduzir a sobre-adaptação E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação de planilhas: modelos ARIMA como os descritos acima são fáceis de implementar em uma planilha. A equação de predição é simplesmente uma equação linear que se refere a valores passados ​​de séries temporais originais e valores passados ​​dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere a valores nas linhas precedentes das colunas A e C, multiplicada pelos coeficientes AR ou MA apropriados armazenados em células noutro local da folha de cálculo.

No comments:

Post a Comment